
Idleness as a Resource in Energy-Neutral WSNs

Alessandro Bogliolo, Emanuele Lattanzi, Valerio Freschi
Department of Basic Sciences and Foundations

University of Urbino
{alessandro.bogliolo, emanuele.lattanzi, valerio.freschi}@uniurb.it

ABSTRACT
In spite of the availability of ultra-low-power microcontrollers
and radio transceivers, the power consumption of an active
sensor node is much higher than the power provided by state-
of-the-art harvesters of suitable size and cost. Hence, the
feasibility of energy-neutral wireless sensor networks mainly
depends on the capability of the nodes to exploit idle pe-
riods to recover the energy spent to perform the tasks as-
signed to them. This paper discusses the main issues which
prevent WSNs to fully exploit the idleness and presents a
general power state model capturing the energy efficiency of
a mote. VirtualSense motes are used as case study to char-
acterize the proposed power state model and to illustrate its
application.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network
Architecture and Design-Wireless communication

General Terms
Performance, Design, Measurements

1. INTRODUCTION
The combination of energy harvesting technologies with ultra-
low-power design practices and advanced dynamic power
management techniques makes it possible to conceive energy-
neutral wireless sensor networks (WSNs) the lifetime of which
is not battery constrained. The design for unlimited lifetime
imposes a paradigm shift from energy-constrained lifetime
maximization, typical of battery-operated devices, to power-
constrained workload maximization, suitable for energy har-
vesting systems. Given the environmental conditions and
the task assigned to a node, the amount of workload it can
sustain with the power scavenged from the environment de-
pends on the efficiency of the harvester and on the energy
efficiency of the node. State-of-the-art ultra-low-power mi-
crocontrollers exhibit 16-bit [8] or 32-bit [16] CPUs clocked
at tens of MHz, which provide a good tradeoff between power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ENSSys’13, November 13 2013, Roma, Italy
Copyright 2013 ACM 978-1-4503-2432-8/13/11. . . $15.00.
http://dx.doi.org/10.1145/2534208.2534214

and performance, while also providing many inactive modes
which offer a valuable support to dynamic power manage-
ment (DPM). In fact, in spite of the energy efficiency of the
microcontrollers, the power consumption of an active sensor
node is much higher than the power provided by state-of-
the-art harvesters of suitable size and cost. Hence, the fea-
sibility of energy-neutral wireless sensor networks strongly
depends on the possibility of exploiting idle periods to turn
most of the components and recover the energy spent during
the active periods.

In practice, the operating conditions in which each node
operates are determined by two external elements: the en-
vironment and the workload. Wireless sensor nodes have
to exploit both environmental energy and workload idleness
in order to achieve the energetic neutrality. As energy har-
vesters are used to scavenge energy from the environment,
DPM techniques are used to exploit the idle periods of the
workload. The energy efficiency of a node depends on the
efficiency of both its harvester and its DPM support.

This paper provides an overview of the main issues which
prevent WSNs to fully exploit the idleness of the workload
and introduces a general power state model that captures the
energy efficiency of a mote from a DPM perspective. The
proposed model is applied to a representative case study,
based on an open-hardware ultra-low-power mote.

2. EXPLOITING IDLENESS IN WSNS
This section discusses the exploitability of the idleness of the
workload of a general purpose wireless sensor node, focusing
on three main aspects: the hardware support to DPM of-
fered by ultra-low-power microcontroller units (MCUs), the
overhead introduced by the software stack, and the issues
raised by the communication needs.

2.1 Microcontroller Unit
Ultra-low-power MCUs [8, 16] provide an energy efficient
active state and several inactive low-power modes (LPMs).
The first way of exploiting the degrees of freedom offered by
the workload is to slow-down the processor up to the limits
possibly imposed by application-level real-time constraints.
This can be done by adjusting the clock frequency and by
scaling the supply voltage accordingly within the ranges ad-
mitted by the MCU family adopted. Frequency and voltage
levels can be adjusted at design time, at configuration time,
or at run time. In the latter two cases, the flexibility of-
fered by dynamic voltage scaling is partially paid by the

limited efficiency of the integrated dc-dc converter, which
looses part of the benefits that could be achieved by provid-
ing directly the minimum supply voltage needed to sustain
the clock frequency of choice. As for frequency scaling, its
main advantage is that of enabling voltage scaling. In fact,
slowing down the clock without reducing the supply volt-
age would not reduce the overall energy spent to execute a
task. Thanks to frequency/voltage scaling, the mode of a
given MCU provides an entire range of operating conditions
the power and performance of which depend on the clock
frequency (f) and voltage level (V cc) adopted.

When the MCU has no tasks to execute and no input events
to process, it can be placed in an inactive mode in which the
CPU is turned off to save power. The LPMs provided by
typical MCUs can be classified into three broad categories,
hereafter denoted by the following names: Standby, in which
the CPU is turned off, but the clock and memory systems
are still powered; Sleep, in which the internal clock system
is turned off so that the MCU looses the capability of is-
suing self wakeup events and measuring the time elapsed
since last shut-down; and Hibernation, in which even the
memory system is turned off, so that there is no data reten-
tion. The three LPM categories provide different tradeoffs
between power consumption, wakeup cost, and functional-
ity. Multiple power states could be available within each
category depending on the technical solutions adopted by
the MCU either to improve energy efficiency or to mitigate
the drawbacks of the LPMs. For instance, an external real-
time clock (RTC) could be used to provide time awareness
and trigger self-wakeups from Sleep and Hibernation modes,
while non-volatile memories could be used to preserve state
information in Hibernation mode.

2.2 Software Stack
In principle, the power modes of the MCU could be directly
exploited by ad-hoc bare-metal applications running with-
out any operating system (OS). Productivity, portability,
and maintenance issues, however, have motivated the devel-
opment of lightweight operating systems [13, 2] and virtual
machines (VMs) [12, 17] suitable to be executed by ultra-
low-power MCUs. As a matter of fact, the most common
platforms for WSNs exhibit a tiny OS and, possibly, a virtual
runtime environment. This section discusses the overhead
introduced by the software stack and its impact on DPM.

The basic DPM mechanism provided by an OS for WSNs
(e.g., Contiki [2]) exploits the Standby mode of the MCU
whenever all the running processes are waiting for sched-
uled timers or external events. A timer interrupt is used in
Standby mode to turn on the CPU periodically in order to
check for elapsed wakeup times. The period of the timer
interrupt (T) is a constant defined at compile time and ini-
tialized once and for all during the boot. The value of T
(which is typically 10ms) determines the time resolution of
the events managed by the OS, including asynchronous ex-
ternal interrupts that are treated by the OS as if they were
aligned with the last timer interrupt. Sleep and Hiberna-
tion modes are not exploited by default because of the lack
of timing information and data retention, which would im-
pair the functioning of the OS. These deeper LPMs, in fact,
could be directly exploited only in case of time-independent,
memory-less tasks triggered by external events.

The OS adds to the cost of wakeup both in terms of energy
and in terms of time. Wakeups from Standby and Sleep
states entail the execution of the interrupt handler and, pos-
sibly, of the OS scheduler before eventually resuming the
execution of the task, while wakeups from Hibernation also
impose a complete reboot of the OS. The situation is even
worse when an additional layer is added to the software stack
to provide a virtual runtime environment. Consider, for in-
stance, a virtual machine like the Darjeeling VM [1], which
executes as a single process on top of the OS. The VM needs
to resume at each timer interrupt in order to check for the
status of its threads. If there are no threads ready to re-
sume, the process is suspended until next timer interrupt.
Hence, the scheduler of the VM needs to be executed at
each wakeup before either resuming the task or deciding to
go back to the original LPM. In case of wakeup from Hi-
bernation, the VM needs to be rebooted from scratch right
after the OS boot.

In a typical scenario, the execution of the Darjeeling VM on
top of Contiki would preclude completely the use of LPMs,
making even the wakeup time from Standby longer than
the wakeup period (T = 10ms) needed by the OS to main-
tain time awareness. In principle, however, periodic wakeups
could be avoided if the MCU was able to react to external
events and there was an oracle able to turn on the CPU
right in time to execute the tasks. Both mechanisms exist
in any mote, in that asynchronous external events can trig-
ger hardware interrupts, while the scheduler of the OS has
the capability of acting as an omniscient oracle for the self-
events scheduled by its processes. Similarly, the scheduler of
the VM can act as an oracle for the self-events scheduled by
its threads. Hence, the LPMs of the MCU can be effectively
exploited in spite of the software stack by dynamically ad-
justing the wakeup period (T) according to the scheduled
events, while possibly using a low-power RTC in order not
to impair time accuracy [10].

2.3 Communication
WSNs make use of multi-hop routing schemes (with star,
mesh, or hybrid topology) to enable a bidirectional commu-
nication between each sensor node and a central node acting
as a gateway (usually called sink). Most protocols entail a
dissemination phase, in which control messages are diffused
by the sink to assign a monitoring task to each node and
to update routing tables, and a collection phase, in which
sensed data are sent from the involved sensors to the sink.
As a matter of fact, communication across the radio chan-
nel is responsible for most of the power budget of the motes.
Three main communication issues are discussed in the fol-
lowing: the power spent for listening, the lack of synchro-
nization, and the energy waste caused by the reception of
unintended packets.

2.3.1 Listening
In order to be ready to receive control messages and possibly
route sensed data, all the nodes of a WSN have to listen to
the radio channel by keeping the radio transceiver in recep-
tion mode, with an average power consumption of tens of
mW, which is several orders of magnitude higher than that
of the MCU. While there are no ultimate solutions for the
reducing the listening power consumption [18], state-of-the-
art ultra-low-power radio transceivers (e.g., TI CC2520 [7])

provide LPMs in which the radio module is turned off to
bring the consumption below 1mW, or even below 1µW at
the cost of a longer wakeup time. The exploitation of the
LPMs of the transceiver, however, impairs the capability of
the node to receive incoming messages, giving rise to global
synchronization issues.

2.3.2 Synchronization
In order to apply DPM techniques to the radio transceivers
of the sensor nodes without impairing their communication
capabilities, it is necessary to guarantee that, whenever a
packet has to be exchanged, both the transmitter and the re-
ceiver have their radio modules turned on. In principle, this
could be done by aligning all the nodes to agreed communi-
cation time slots, but the global synchronization tends to be
counterproductive in terms of power consumption because
of the independence of the actual communication needs and
because of the additional overhead [9]. Two techniques can
be adopted to cope with the lack of a global synchronization:
duty cycling, in which the radio module of each node wakes
up periodically and waits for the radio module of its peer
to wake up before exchanging a packet, and asynchronous
wakeup, in which the transmitter is assumed to be able to
trigger the wakeup of the receiver.

Duty cycling solutions are further classified into transmitter-
initiated schemes, where a preamble is sent by the trans-
mitter to announce a packet, or receiver-initiated schemes,
where a beacon is sent by the receiver to announce that it
is ready to receive a packet. Wake-on radios are also avail-
able that perform duty cycling without involving the MCU
[14]. Regardless of the flavour adopted, duty cycling im-
poses a trade off between power and performance. In fact,
longer wakeup periods reduce the average power consump-
tion at the cost of increasing the average latency. More-
over, the initiator of the communication has to send the
preamble/beacon until the other party wakes up. Both the
average and the worst cases depend on the length of the
wakeup period. For instance, Contiki MAC implements
the transmitter-initiated duty cycling scheme of the IEEE
802.15.4 protocol by using directly the data packets in place
of the beacons. This implies that each packet is retransmit-
ted until an ack is received or the wakeup period elapses.

Asynchronous schemes provide an attractive alternative my
making use of wakeup receivers that can be either in-band
or out-of-band, depending on the channel used for trigger-
ing the wakeup [3, 6, 5, 15, 4]. These solutions tend to be
more efficient than duty cycling both in terms of communica-
tion cost (in that they avoid retransmissions) and in terms
of latency (since the wakeup time is usually much shorter
than the duty cycling period), but the listening power of
the wakeup receiver adds to the average power consumption
of the LPM.

Independently of the rendez-vous scheme adopted, packets
exchanged among the nodes of dense WSNs have a non-
negligible collision probability, that further impairs energy
efficiency and performance by requiring re-transmissions. A
clear channel assessment (CCA) process is used right after
wakeup in contention-based protocols both by the transmit-
ter and by the receiver to detect the activity on the channel.
If no activity is detected at wakeup, the transmitter enters

in transmit mode, while the receiver goes back to LPM. On
the contrary, if some activity is detected at wakeup, the
transmitter goes back to LPM and waits for the subsequent
period to transmit its packet, while the receiver enters in re-
ceive mode and waits for the header of an incoming packet.

2.3.3 Overhearing
In dense WSNs each node receives and decode not only
its own incoming packets, but also any other packet orig-
inated within the range if its antenna and possibly directed
to other nodes. This phenomenon, known as overhearing of
unintended packets, causes a sizeable waste of energy which
is hard to be addressed by energy-aware algorithms. As a
matter of fact, the energy required to receive an unintended
packet is almost the same required to receive an intended
one, while the percentage of unintended packets is much
higher than 50% because of the density required to guar-
antee a redundant coverage of the target area and of the
omnidirectional nature of the antennas usually installed on
sensor nodes. In principle, three types of solutions can be
adopted: i) using reservation-based protocols on top of duty
cycling, which is usually not applicable in WSNs because
of the lack of synchronization and of the variability of the
topology, ii) out-of-band selective wakeup, which makes use
of a separate signaling channel to wakeup the receiver while
keeping all other nodes in a LPM, ad iii) unintended frame
filtering, which exploits the hardware frame filtering capa-
bilities provided by state-of-the-art radio transceivers [7] to
turn off the radio module of the receiver as soon as the ad-
dress of an unintended packet is received.

3. POWER STATE MODEL
This section presents a general power state model to be used
to represent the DPM support provided by a given wireless
sensor node and to evaluate to what extent it enables the
exploitation of the idleness of the workload.

Standby

Sleep

Hibernation

Active

abcd bcd

abc ab a

bc b

OS
boot

VM
boot

Int
Hand

OS
sched

VM
sched

Task

Figure 1: Power-state model including the transient
states of the software stack.

Figure 1 shows the power-state diagram of a generic ultra-
low-power MCU, as described in Section 2.1, providing one
active mode and three LPMs. The active mode is split into
several states to represent the macro-steps required at wake-
up to resume the execution of a task running on top of the

operating OS and, possibly, of a virtual runtime environ-
ment, as described in Section 2.2. Dashed circles are used
to denote optional states, which are to be considered only in
case of virtualization. Solid arcs represent self-events, while
dashed ones represent external interrupts.

According to the definition of the low-power states, self
wake-up is enabled only from Standby, while external inter-
rupts are required to wakeup from Sleep and Hibernation.
It is also worth noticing that a complete boot is required
when exiting from Hibernation, while data retention allows
execution to resume directly when exiting from Standby and
Sleep modes. Transitions represented on the right-hand side
of the graph denote the possibility of entering low-power
states directly from a code segment and resuming execution
from the same point at wake-up at any level of the software
stack.

According to the behavior described in Section 2.2, Contiki
exploits the Standby state whenever all its running processes
are waiting for scheduled timers or external events, but in
order to keep control of the elapsed time it sets a periodic
timer interrupt which wakes up the CPU every 10ms. Upon
wake-up the interrupt handler evaluates if there are running
processes which need to resume execution. If this is the
case the control is passed to the scheduler, otherwise the
CPU is turned off again soon. As mentioned in Section 2.2,
the Darjeeling VM running on Contiki is a process which
needs to resume at each timer interrupt in order to check
for the status of its threads. If there are no threads ready to
resume, the process is suspended until next timer interrupt.
Labels a, b, c, and d in Figure 1 denote the transitions taken
upon a timer interrupt in case of: a) a task ready to resume
execution, b) a virtual runtime environment without tasks
to resume, c) an OS with no processes to resume, and d) a
wakeup directly filtered by the interrupt handler.

Standby

Sleep

Hibernation

Active

b[e,t]

c[e,t]

d[e,t]WU[e,t]

WU[e,t]

WU[e,t]
a[e,t]

[p]

[p]

[p]

[p]

Figure 2: Power-state model with hidden transient
states and self-loops.

Figure 2 provides a simplified version of the power state di-
agram where cases b, c, and d are represented as self-loops
of the Standby state and annotated with the energy and
time they require to be traversed. Similarly, the software
overhead (both in terms of energy and time) is implicitly
associated with the wake-up transitions from LPMs rather

than being explicitly represented by the corresponding tran-
sient states of Figure 1. Each state of the diagram of Figure
2 is assumed to be annotated with its average power con-
sumption. In order to adapt the model to MCU families
providing more than one inactive state for each LPM, the
number of power states can be incremented accordingly.

Standby

Sleep

Hibernation

Active

WU[e,t]

WU[e,t]

WU[e,t]
a[e,t]

[p(T)]

[p]

[p]

[p]

Figure 3: Power-state model with implicit self-loops.

A further abstraction is provided in Figure 3, where all the
self loops that are traversed periodically are not represented
any more because their overhead is directly accounted for in
the average power consumption of the Standby state. Since
such an overhead depends on the period of the timer inter-
rupt (T), the Standby mode is represented as a family of
parametric power states the average power consumption of
which depends on the value of T . A similar approach can
be used, in general, to incorporate into the average power
consumption of a given state any self-loop (possibly go-
ing through multiple transient states) periodically traversed
from that state.

Unintended

Intended

EoP

ProcessWait Transmit

Figure 4: Functional state diagram of a wireless sen-
sor node.

Figure 4 shows the top-level functional state diagram of a
mote which exhibits two macro states: Wait, in which the
node is waiting for incoming messages or events, and Process,
in which the node executes a task. Wait is represented as a
family of states corresponding to the different LPMs made
available by the platform adopted, taking into account the
MCU (as modelled in Figure 3), the support provided by the
radio transceiver, and the communication solutions adopted
(as discussed in Section 2.3). Transitions from Wait to Pro-
cess are triggered either by incoming intended packets or by
relevant events, while transitions from Process to Wait are
triggered by end-of-processing (EoP) events. The reception
of an unintended packet and the transmission of a packet
are represented as self-loops of Wait and Process states, re-
spectively, in that they do not cause any state transition.

For a given mote, the functional diagram has to be charac-
terized in terms of average power consumption of the Pro-
cess state and of all the Wait states available, and in terms
of the time and energy required to traverse each edge. The
annotated diagram can then be used to evaluate the capa-
bility of the mote to exploit the idleness of its workload, as
exemplified in the following Section.

4. CASE STUDY
The models derived so far are used in this section to evalu-
ate the energy efficiency of VirtualSense, an open-hardware
ultra-low-power mote used here as a case study [10]. Vir-
tualSense makes use of a TI MPS430F5418A MCU [8] to
run a customized version of the Darjeeling VM [1] on top
of Contiki OS [2], thus providing a Java-compatible virtual
runtime environment. A TI CC2520 RF transceiver [7] is
used for IEEE 802.15.4 wireless communication. In addi-
tion, VirtualSense mounts external real-time clock and flash
memory to provide self-wakeup capabilities, accurate time
measures, and data retention in all the LPMs of the MCU.

State Power WUt WUe
name [µW] [ms] [µJ]

Active 13440 n.a. n.a.
Standby(T) 14.67 + 0.30/T 23.41 312.72
Sleep 1.32 + 0.30 23.41 312.72
Hibernation 0.36 + 0.30 560 4709.70

Table 1: Characterization of the power-state model
of a VirtualSense mote with the MCU powered at
3V and clocked at 16MHz with a 4Kbyte VM heap.

Table 1 shows the parameters of the power-state model of
Figure 3 characterized by means of real-world measurements
performed on VirtualSense powered at 3V and clocked at
16MHz. Power values include the consumption of all the
components, while wakeup time and energy from Hiberna-
tion include the cost of restoring the heap of the VM from
the external flash memory.

The first row of Table 2, labelled baseline, reports the cor-
responding parameters of the functional state diagram of
Figure 4, obtained with the default settings of VirtualSense,
which exploits only the Standby LPM of the MCU (with a
T = 100ms) and the LPM1 of the radio transceiver.

Thanks to the open hardware nature of the VirtualSense
project and to the modular design of the mote [11], the fol-
lowing solutions have been implemented and tested in order
to improve the exploitability of the idle periods of the work-
load, according to the discussion conducted in Section 2: i)
the software stack has been modified in order to allow the
exploitation of all the LPMs of the MCU [10], ii) the device
driver of the radio transceiver has been modified in order to
exploit the LPM2 [10], iii) the hardware frame filtering (FF)
capabilities of the radio transceiver have been exploited to
turn off the radio module as soon as the address of an unin-
tended packet is received, iv) an ultrasonic (US) module has
been developed to provide out-of-band asynchronous wakeup
capabilities, and v) a simple out-of-band addressing scheme
(USa) has been implemented to provide selective wake-up
capabilities.

The impact of the advanced solutions on the parameters of
the state diagram is shown in Table 2 for the most relevant
configurations. The labels in each row report the name of
the LPM of choice possibly followed by a suffix denoting
the adoption of frame filtering (FF) or ultrasonic out-of-
band wakeup solutions (US or USa). Moreover, prefix ML is
used to denote the case of a memory-less application which
does not require the external flash memory to restore the
heap of the virtual machine. It is worth noticing that the
solutions adopted cause a reduction of the waiting power of
three orders of magnitude, without adding to much to the
transition costs.

1

10

100

1000

10000

10 100 1000 10000 100000

Inter arrival time [s]
P

o
w

e
r

[u
W

]

Baseline

Standby FF

Sleep USa

Hibernation US

Hibernation USa

ML-Hibernation USa

Figure 5: Average power consumption of a mote as a
function of the inter-arrival time between incoming
packets, for different low-power modes. Data refer
to the case in which 20% of the packets received are
intended packets.

Table 2 allows application developers to perform accurate
power simulations to evaluate the exploitability of the idle-
ness of the workload and to choose the best configuration
of the motes adopted. For instance, Figure 5 shows the
average power consumption of a generic VirtualSense node
as a function of the inter-arrival time among the incoming
packets, assuming that only 20% of them are intended pack-
ets. The curves are associated with the configurations of
Table 2 to provide a direct comparison of their energy effi-
ciency in different operating conditions. The choice of the
most suitable configuration can reduce the average power
consumption of up to four orders of magnitude with respect
to the default settings of an ultra-low-power mote in case of
long inter-arrival times.

5. CONCLUSIONS
The possibility of a building energy-neutral WSNs strongly
depends on the capability of its nodes to exploit the idle
periods to recover the energy spent to execute the tasks
assigned to them. In fact, the power consumption of an
active node is much higher than the average power supply
provided by energy harvesters compatible with the typical
requirements of a WSNs.

This paper has pointed out the main issues that impair
the effectiveness of DPM techniques, and it has provided
an overview of the state-of-the-art solutions available to ad-
dress such issues. Moreover, it has proposed a power state

Wait Unintended Receive Transmit
Configuration [uW] [uJ] [ms] [uJ] [ms] [uJ]

Baseline 3,451.5 1,502.3 73.4 1,559.44 50.0 3,697.11
Standby 747.5 1,502.3 73.4 1,559.44 50.0 3,697.11

Standby FF 747.5 521.4 73.4 1,559.44 50.0 3,697.11
Sleep 734.4 1,502.3 73.4 1,559.44 50.0 3,697.11

Sleep FF 734.7 521.4 73.4 1,559.44 50.0 3,697.11
Sleep US 3.678 1,503.2 28.2 1,560.31 65.9 3,746.4
Sleep USa 3.678 3.87 428.2 1,563.31 515.9 13,555.2

Hibernation US 2.718 5,987.5 564.8 6,044.6 65.9 3,746.4
Hibernation USa 2.718 3.87 964.8 6,047.6 515.9 13,555.2

ML-Hibernation US 2.718 1,547.0 31.49 1,604.1 65.9 3,746.4
ML-Hibernation USa 2.718 3.87 431.49 1,607.1 515.9 13,555.2

Table 2: Parameters of the state diagram of Figure 4 for all the relevant configurations of VirtualSense. All
the parameters were measured on a mote powered at 3V, with the MCU clocked at 16MHz and the ultrasonic
module powered at 2V.

model to be used to evaluate the energy efficiency of a wire-
less sensor node, and it has illustrated its application on a
representative case study. The results obtained on the case
study demonstrate that a careful exploitation of the idleness
of the workload can reduce the average power consumption
of a wireless sensor node of up to four orders of magnitude.

6. REFERENCES
[1] N. Brouwers, K. Langendoen, and P. Corke.

Darjeeling, a feature-rich vm for the resource poor. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 169–182,
New York, NY, USA, 2009. ACM.

[2] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks, LCN ’04, pages 455–462, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] G. U. Gamm, M. Sippel, M. Kostic, and L. M. Reindl.
Low power wake-up receiver for wireless sensor nodes.
In Proceedings of the 6th International Conference on
Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2010, ISSNIP ’10, pages
121–126, 2010.

[4] C. Hambeck, S. Mahlknecht, and T. Herndl. A 2.4Âţw
wake-up receiver for wireless sensor nodes with -71dbm
sensitivity. In International Symposium on Circuits
and Systems (ISCAS 2011), pages 534–537, 2011.

[5] X. Huang, P. Harpe, G. Dolmans, and H. de Groot. A
915mhz ultra-low power wake-up receiver with
scalable performance and power consumption. In
Proceedings of the 37th European Solid-State Circuits
Conference, ESSCIRC 2011, pages 543–546, 2011.

[6] X. Huang, P. Harpe, W. Xiaoyan, G. Dolmans, and
H. de Groot. A 915mhz ultra-low power wake-up
receiver with scalable performance and power
consumption. In Proceedings of the 37th European
Solid-State Circuits Conference, ESSCIRC 2011,
pages 543–546, 2011.

[7] T. Instruments. Cc2520 datasheet, 2013.

[8] T. Instruments. Msp430 ultra-low-power

microcontrollers datasheet, 2013.
[9] V. Jelicic, M. Magno, D. Brunelli, V. Bilas, and

L. Benini. Analytic comparison of wake-up receivers
for wsns and benefits over the wake-on radio scheme.
In Proceedings of the 7th ACM workshop on
Performance monitoring and measurement of
heterogeneous wireless and wired networks, PM2HW2N
’12, pages 99–106, New York, NY, USA, 2012. ACM.

[10] E. Lattanzi and A. Bogliolo. A java library for
event-driven communication in power-manageable
reactive sensor nodes. In Proceedings of NetWare,
pages 112–118. IARIA, 2012.

[11] E. Lattanzi and A. Bogliolo. Virtualsense: A
java-based open platform for ultra-low-power wireless
sensor nodes. International Journal of Distributed
Sensor Networks, 2012, 2012.

[12] P. Levis and D. Culler. Maté: a tiny virtual machine
for sensor networks. SIGOPS Oper. Syst. Rev.,
36(5):85–95, Oct. 2002.

[13] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating
system for sensor networks. In Ambient Intelligence.
Springer Verlag, 2004.

[14] G. Lu, D. D. Mingsen, and X. Song. Telosw: Enabling
ultra low-power wake-on sensor networks. In 7th
International Conference on Networked Sensing
Systems (INSS), pages 15–18, 2010.

[15] S. J. Marinkovic and E. M. Popovici. Nano-power
wireless wake-up receiver with serial peripheral
interface. IEEE Journal on Selected Areas in
Communications, 29(8):1641–1647, 2011.

[16] S. Microelectronics. Stm32l1 series, 2013.

[17] R. Müller, G. Alonso, and D. Kossmann. A virtual
machine for sensor networks. SIGOPS Oper. Syst.
Rev., 41(3):145–158, Mar. 2007.

[18] M. Sha, G. Hackmann, and C. Lu. Energy-efficient low
power listening for wireless sensor networks in noisy
environments. In Proceedings of the 12th international
conference on Information processing in sensor
networks, IPSN ’13, pages 277–288, New York, NY,
USA, 2013. ACM.

